US009426174B2

a2z United States Patent (10) Patent No.: US 9,426,174 B2
Campbell 45) Date of Patent: Aug. 23, 2016
(54) PROTECTING COMPUTING ASSETS FROM USPC ottt 709/224
SEGMENTED HTTP ATTACKS See application file for complete search history.
(71) Applicant: é}'g)or Networks, Inc., Burlington, MA (56) References Cited
U.S. PATENT DOCUMENTS
(72) Inventor: Aaron Campbell, Hammond Plains
(CA) 2002/0035628 Al* 3/2002 Gil ..cooovevvevecnn HO4L 12/2602
709/224
(73) Assignee: é}'g)or Networks, Inc., Burlington, MA * cited by examiner
(*) Notice: Subject to any disclaimer, the term of this Pr ir.nar v Exam i1.1er o Jeffrey Pwu
patent is extended or adjusted under 35 Assistant Examiner — Michael D Anderson
U.S.C. 154(b) by 208 days. (74) Attorney, Agent, or Firm — Locke Lord LLP; Scott D.
Woftsy; Christopher J. Capelli
(21) Appl. No.: 14/098,019
] (57) ABSTRACT
(22) Filed: Dec. 5, 2013 A method and system for managing data traffic and protectin,
Yy ging p 2
(65) Prior Publication Data computing assets. The method and system includes analyzing
HTTP requests to determine if the HT'TP requests are overly
US 2015/0163241 Al Jun. 11, 2015 segmented, and, if the HTTP request is overly segmented,
blocking and/or black-listing the malevolent communica-
(51) Int. CL tions and computing device. The analysis to determine if an
HO4L 29/00 (2006.01) HTTP request is overly segmented includes comparing the
HO4L 29/06 (2006.01) packet’s size to a threshold, identifying the packet’s content
(52) US.CL or lack thereof, identifying whether the packet is the last
cPC ... HO4L 63/1458 (2013.01); HO4L 63/1425 packet in a communication, and identifying whether the
(2013.01) packet ends with the “\n”” ASCII character.
(58) Field of Classification Search
CPC GO6F 15/173 18 Claims, 3 Drawing Sheets
Q0 oy OFiginating Originating
computing computing
device device T
Originating ! k Criginating ‘
computing computing
device device
Originating Originating
computing computing
device - device

05 o

3 Target

200 \

Proxy

computing
device

U.S. Patent Aug. 23,2016 Sheet 1 of 3

Originating
computing
S S device
Originating
computing
E device

devic

Originating |
. computing
device

Proxy

Targe
computing
device

Fig. 1

Originating |
computing

(]

US 9,426,174 B2

Originating
computing |
device

Originating
computing
device

U.S. Patent Aug. 23,2016 Sheet 2 of 3 US 9,426,174 B2

1001 -y Install proxy within communications path(s) to be protected.

1002 e : Monitor traffic on the communications path(s).

B R .-

1003 Compare an HTTP packet’s size 1o a threshold. :

* Identify whether the HTTP packet consists essentially of HTTP
L T

t

§

1007 -+ Block communications from the originating device and/or network.

1000 Fig. 2

U.S. Patent Aug. 23,2016 Sheet 3 of 3 US 9,426,174 B2

Processor | . Interface device | | Network devic

AAA

Memory 340

t Ranmmnnman

RAM 342

300 Fig. 3

US 9,426,174 B2

1
PROTECTING COMPUTING ASSETS FROM
SEGMENTED HTTP ATTACKS

FIELD OF THE INVENTION

The present invention relates to protecting networks, and
more particularly, to protecting computing assets from denial
of service attacks utilizing overly segmented HTTP commu-
nications.

BACKGROUND OF THE INVENTION

As businesses become increasingly dependent on comput-
erized communications, businesses concurrently become
increasingly vulnerable to attacks on the underlying com-
puter infrastructure. One such type of attack is a denial of
service attack, which may take any number of forms. One
such form is to overly segment HT'TP communications, thus
overwhelming a server.

Accordingly, there is an unmet need to protect computing
assets from overly segmented HTTP communications in a
denial of service attack, such as a distributed denial of service
attack.

SUMMARY OF THE INVENTION

The purpose and advantages of the below described illus-
trated embodiments will be set forth in and apparent from the
description that follows. Additional advantages of the illus-
trated embodiments will be realized and attained by the
devices, systems, and methods particularly pointed out in the
written description and the claims herein, as well as from the
drawings.

To achieve these and other advantages and in accordance
with the purpose of the illustrated embodiments, described
herein are systems and methods for protecting computing
assets from a denial of service attack taking the form of overly
segmented HTTP requests. In one embodiment, a proxy is
placed between a server and devices that may send HTTP
requests to the server. Preferably the proxy is located “out-
side” the firewall, so as to also protect the firewall, but it is
contemplated herein that the computing proxy device may be
placed anywhere in the communication paths. The proxy
monitors HTTP requests to identify overly segmented HTTP
requests by analyzing information such as the packet size, the
packet content (or lack thereof), whether the packet is the last
packet in a communication, and whether the packet ends with
the “‘\n” ASCII character. Based on these considerations,

malevolent communications and/or computing devices may
be identified, blocked and/or black listed.

BRIEF DESCRIPTION OF THE DRAWINGS

So that those having ordinary skill in the art, to which the
present embodiments pertain, will more readily understand
how to employ the novel system and methods, certain illus-
trated embodiments thereof will be described in detail herein-
below with reference to the drawings, wherein:

FIG. 1 illustrates a system diagram of an exemplary
embodiment of a system for protecting computing assets
from segmented HTTP attacks;

FIG. 2 is a flow chart illustrating an exemplary use of the
embodiment of FIG. 1; and

FIG. 3 is an illustration of an embodiment of a computing
device.

10

15

20

25

30

35

40

45

50

55

60

65

2

DETAILED DESCRIPTION OF CERTAIN
EMBODIMENTS

The below illustrated embodiments are directed to systems
and methods for managing network traffic by identifying and
blocking denial of service attacks predicated upon overly
segmented HTTP requests. It is to be appreciated the below
illustrated embodiments are not limited in any way to what is
shown, as the illustrated embodiments described below are
merely exemplary of the invention, which can be embodied in
various forms, as appreciated by one skilled in the art. There-
fore, it is to be understood that any structural and functional
details disclosed herein are not to be interpreted as limiting,
but merely as a basis for the claims and as a representative for
teaching one skilled in the art to variously employ the certain
illustrated embodiments. Also, the flow charts and methods
described herein do not imply either required steps or a
required order to the steps, and the illustrated embodiments
and processes may be implemented in any order and/or com-
bination that is practicable.

Unless defined otherwise, all technical and scientific terms
used herein have the same meaning as commonly understood
by one of ordinary skill in the art relating to the below illus-
trated embodiments. Although any methods and materials
similar or equivalent to those described herein can also be
used in the practice or testing of the below illustrated embodi-
ments, exemplary methods and materials are now described.

It must be noted that as used herein and in the appended
claims, the singular forms “a”, “an,” and “the” include plural
referents unless the context clearly dictates otherwise. Thus,
for example, reference to “a stimulus” may include a plurality
of such stimuli and reference to “the signal” may include
reference to one or more signals and equivalents thereof as
known to those skilled in the art.

It is to be appreciated the certain embodiments described
herein may be utilized in conjunction with a software algo-
rithm, program or code residing on computer useable medium
having control logic for enabling execution on a machine
having a computer processor. The machine typically includes
memory storage configured to provide output from execution
of the computer algorithm or program. As used herein, the
term “software” is meant to be synonymous with any code or
program that can be executed by a processor of a host com-
puter, regardless of whether the implementation is in hard-
ware, firmware or as a software computer product available
on a disc, a memory storage device, or for download from a
remote machine. The embodiments described herein include
such software to implement the equations, relationships and
algorithms described above. One skilled in the art will appre-
ciate further features and advantages of the certain embodi-
ments described herein. Thus the certain embodiments are not
to be understood to be limited by what has been particularly
shown and described, except as indicated by the appended
claims.

The methods and systems described herein allow users to,
in an exemplary use, monitor network traffic to protect one or
more computing assets from Denial Of Service (DOS)
attacks, such as Distributed Denial Of Service (DDOS)
attacks, that are predicated upon overly segmented HTTP
requests. The detection of overly segmented HTTP requests
may be done by analyzing the packet size and comparing the
packet’s size to a predetermined threshold (e.g., 500 bytes,
1000 bytes), the packet content or lack thereof (e.g., if the
TCP/IP packet consists and/or consists essentially of HTTP
header data), whether the packet is the last one in the com-
munication, and/or whether the packet ends with the “\n”
ASCII character represented by 0A16 (i.e., the hexadecimal

US 9,426,174 B2

3

number “0A”, which is equivalent to the decimal number 10).
Based on these identifications, communications from com-
puters sending such HTTP communications may be blocked
and/or black listed (e.g., all communications from the offend-
ing computer are blocked, all communications from the
offending computer’s network are blocked, and/or the offend-
ing computer’s IP is communicated to other networks to
enable those networks to also block communications from the
offending computer and/or its network).

Referring to FIG. 1, ahardware diagram depicting an envi-
ronment 100 in which the processes described herein can be
executed is provided for exemplary purposes. In one embodi-
ment, environment 100 includes proxy module 105, networks
50, communications 75, originating computing devices 90,
and target computing device 200.

Turning to FIG. 2, illustrated therein is in an exemplary
process 1000 of utilizing proxy module 105. Starting at step
1001, proxy module 105 is installed on one or more commu-
nication paths to be protected (best shown in FIG. 1, where
proxy module 105 is placed between originating devices 90
and target computing device 200). It is contemplated herein
that proxy module 105 may be placed anywhere along the
communications path, including for exemplary purposes only
and without limitation, “behind” the firewall (the term
“behind” being from the perspective of the network that the
firewall is protecting; in other words, in this scenario proxy
module 105 is placed on the same side of the firewall as the
rest of the network), “in front of” the firewall (should be
self-explanatory in light of the previous parenthetical), within
the firewall (e.g., as a piece of software, firmware and/or any
computing instructions that may execute within the firewall to
provide the functionality and/or methods described herein),
“in front of” the modem and/or device communicating with
the Internet Service Provider (ISP) (e.g., within the ISP’s
network, at the border between the ISP and the modem),
and/or within the modem and/or device communicating with
the ISP. It is further contemplated herein that, for exemplary
purposes only and without limitation, proxy module may be
implemented on a separate piece of hardware that only
executes the embodiments and methods described herein,
and/or as software and/or firmware that executes on electron-
ics that do and/or may provide other functionality (e.g., a
firewall, a modem).

Subsequently, traffic on communication path(s) is moni-
tored by proxy module 105 (step 1002). The communication
paths are between target computing device 200 and originat-
ing devices 90 that send HTTP requests to target computing
device 200. Proxy module 105 may compare an HTTP pack-
et’s size (step 1003) to a packet size threshold (e.g., 500 bytes,
1,000 bytes), identify whether the HTTP packet is the last
packet (step 1004) in the communication (e.g., when an
HTTP request is too large for one packet the request may be
broken into any number of packets), identify whether the
HTTP packet ends with the “\n” character that is represented
by 0A16 in the American Standard Code for Information
Interchange (ASCII), and/or identify whether the HTTP
packet consists mainly and/or essentially of HTTP header
data (step 1006).

In one embodiment, all four of these conditions must be
met in three successive packets to qualify as overly seg-
mented HTTP packets. In another embodiment, some of the
conditions (e.g., two, three) must be met in a subset of packets
(e.g., two out of three successive packets, four out of six, three
out of four, two/three/four packets in a single HTTP request,
or any combination and/or derivative as would be recognized
by those skilled in the art).

10

15

20

25

30

35

40

45

50

55

60

65

4

In one embodiment, the packet size threshold is signifi-
cantly less than a Maximum Transmission Unit (MTU) for a
communication path (e.g., if the MTU is 1500, the threshold
may be 500, 750, and/or 1000).

After an HTTP request with overly segmented packets is
identified, the resultant action may be (step 1007), for exem-
plary purposes only and without limitation, communications
from the originating computing device being blocked, com-
munications from the originating computing device’s net-
work being blocked, identitying information (e.g., domain, IP
address, IP block) about the originating computing device
being communicated to one or more other network managers,
in the form of an alert, and the other network manager(s) may
elect to block the originating computing device themselves.

Turning now to FIG. 3, illustrated therein is an exemplary
embodiment of computing device 300 that preferably
includes bus 305, over which intra-device communications
preferably travel, processor 310, interface device 320, net-
work device 330, and memory 340, which preferably includes
RAM 342 and hard drive 345 and database 346. In FIG. 1,
proxy module 105, target computing device 200 and originat-
ing computing device 90 preferably include computing
device 300 and the components thereof.

The term “module”/“engine” is used herein to denote a
functional operation that may be embodied either as a stand-
alone component or as an integrated configuration of a plu-
rality of subordinate components. Thus, “modules™/“en-
gines” may be implemented as a single module or as a
plurality of modules that operate in cooperation with one
another. Moreover, although “modules™/“engines” may be
described herein as being implemented as software, they
could be implemented in any of hardware (e.g. electronic
circuitry), firmware, software, or a combination thereof.

Memory 340 is a computer-readable medium encoded with
a computer program. Memory 340 stores data and instruc-
tions that are readable and executable by processor 310 for
controlling the operation of processor 310. Memory 340 may
be implemented in random access memory 342 (RAM), a
non-transitory computer readable medium, volatile or non-
volatile memory, solid state storage devices, magnetic
devices, hard drive 345, database 346, a read only memory
(ROM), or a combination thereof.

Processor 310 is an electronic device configured of logic
circuitry that responds to and executes instructions. Processor
310 outputs results of an execution of the methods described
herein. Alternatively, processor 310 could direct the output to
a remote device (not shown) via network(s) 50.

It is to be further appreciated that networks 50 depicted in
FIG. 1 can include a local area network (LAN) and a wide
area network (WAN), other networks such as a personal area
network (PAN), or any combination thereof. Further, each
network 50 in FIG. 1 may include the exact same network
configurations, completely different network configurations,
or any combination thereof. Such networking environments
are commonplace in offices, enterprise-wide computer net-
works, intranets, and the Internet. For instance, when used in
a LAN networking environment, the proxy module 105 is
connected to the LAN through a network interface or adapter
(not shown). When used in a WAN networking environment,
the computing system environment typically includes a
modem or other means for establishing communications over
the WAN, such as the Internet. The modem, which may be
internal or external, may be connected to a system bus via a
user input interface, or via another appropriate mechanism. In
anetworked environment, program modules depicted relative
to proxy module 105, or portions thereof, may be stored in a
remote memory storage device such as storage medium. It is

US 9,426,174 B2

5

to be appreciated that the illustrated network connections of
FIG. 1 are exemplary and other means of establishing a com-
munications link between multiple computers may be used.

It should be understood that computing devices 300 each
generally include at least one processor, at least one interface,
and at least one memory device coupled via buses. Comput-
ing devices 300 may be capable of being coupled together,
coupled to peripheral devices, and input/output devices.
Computing devices 300 are represented in the drawings as
standalone devices, but are not limited to such. Each can be
coupled to other devices in a distributed processing environ-
ment.

The techniques described herein are exemplary, and should
not be construed as implying any particular limitation on the
present disclosure. It should be understood that various alter-
natives, combinations and modifications could be devised by
those skilled in the art. For example, steps associated with the
processes described herein can be performed in any order,
unless otherwise specified or dictated by the steps them-
selves. The present disclosure is intended to embrace all such
alternatives, modifications and variances that fall within the
scope of the appended claims.

The terms “comprise”, “include”, and conjugations thereof
are to be interpreted as specifying the presence of the stated
features, integers, steps or components, but not precluding the
presence of one or more other features, integers, steps or
components or groups thereof.

Although the systems and methods of the subject invention
have been described with respect to the embodiments dis-
closed above, those skilled in the art will readily appreciate
that changes and modifications may be made thereto without
departing from the spirit and scope of the subject invention as
defined by the appended claims.

What is claimed is:

1. A computer-implemented method of detecting a Denial
of Service (DoS) attack comprising: determining a size of a
plurality of segmented HTTP packets that comprise a com-
munication; and detecting an occurrence of a DoS attack on a
server based on whether the following first conditions are
satisfied: the determined size of a packet of the plurality of
segmented HTTP packets is less than a threshold value; and
the HTTP packet is not the last packet in the communication.

2. The computer-implemented method of claim 1, wherein
the step of detecting is further based on determining whether
the following second conditions are satisfied: whether the
HTTP packet does not end with the “\n” ASCII character
represented by 0A16; and whether the HTTP packet consists
essentially of HT'TP header data.

3. The computer-implemented method of claim 2, wherein
the HTTP packets are sent from a computer and directed to
the server, and wherein the step of detecting an attack com-
prises identifying at least three consecutive HTTP packets
that satisfy the first and second conditions.

4. The computer-implemented method of claim 1, wherein
the communication from the computer to the server traverses
a path with a Maximum Transmission Unit (MTU), and
wherein the threshold is significantly less than the path’s
MTU.

5. The computer-implemented method of claim 2, wherein
the step of detecting an attack comprises identifying at least
two packets in the communication that satisfy the first and
second conditions.

6. The computer-implemented method of claim 2, wherein
the step of detecting an attack comprises identifying at least
three packets in the communication that satisfy the first and
second conditions.

35

40

45

6

7. The computer-implemented method of claim 1, wherein
the threshold is selected from the range of 400 bytes to 1000
bytes.

8. The computer-implemented method of claim 1, the
method further comprising stopping all communications
from the computer to the server.

9. The computer-implemented method of claim the method
further comprising:

generating a reset packet; and

issuing the reset packet to the server, wherein the reset

packet is configured to instruct the server to release
resources consumed by the DoS attack.
10. The computer-implemented method of claim 1, the
method further comprising sending an alert that a Denial of
Service attack was detected.
11. A computer-implemented method for detecting a
Denial of Service (DoS) computer attack upon a server, com-
prising: determining whether an HTTP request is overly seg-
mented, including; determining whether a packet size of more
than one consecutive packet of the HT'TP request is less than
a threshold value; and determining that none of the more than
one consecutive packets ends with a newline character; and
detecting the occurrence of a DoS attack if the HTTP request
is determined to be overly segmented.
12. The computer-implemented method of claim 11 further
comprising blacklisting a source host of the HTTP request if
it is determined none of the more than one consecutive pack-
ets ends with a newline character.
13. A computer-implemented method of detecting a Denial
of Service (DoS) attack in a communication from a comput-
ing device to a server, the communication comprising HTTP
packets and the method comprising:
determining which HTTP packets in the communication
satisfy all three of the following conditions:
(a) whether the HTTP packet is not the last packet in the
communication;
(b) whether the HTTP packet does not end with the “\n”
ASCII character represented by 0A | 4; and
(c) whether the HTTP packet consists essentially of
HTTP header data.
14. The computer-implemented method of claim 13, the
method further comprising:
determining if three successive HT'TP packets in the com-
munication satisfied the three conditions; and

identifying that a DoS attack is occurring based on three
successive HTTP packets in the communication satisfy-
ing the three conditions.
15. The computer-implemented method of claim 13, the
method further comprising:
determining if two successive HT'TP packets in the com-
munication satisfied the three conditions; and

identifying that a DoS attack is occurring based on two
successive HTTP packets in the communication satisfy-
ing the three conditions.

16. The computer-implemented method of claim 13, the
method further comprising:

determining if at least three HTTP packets in the commu-

nication satisfied the three conditions; and

identifying that a DoS attack is occurring based on at least

three HT'TP packets in the communication satisfying the
three conditions.

17. The computer-implemented method of claim 13, the
method further comprising:

identifying that a DoS attack has occurred;

generating a reset packet; and

US 9,426,174 B2
7

issuing the reset packet to the server, wherein the reset
packet is configured to instruct the server to release
resources consumed by the DoS attack.

18. The computer-implemented method of claim 13,
wherein it is further determined which HTTP packets have a 5
packet size less than a predetermined threshold, and wherein
the communication from the computer to the server traverses
a path with a Maximum Transmission Unit (MTU), and
wherein the threshold is significantly less than the path’s
MTU. 10

